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Interfacial Mass Transfer across a Single Microdroplet/Water Boundary.
Laser Trapping and Generation-Collection Experiments at a Microelectrode Array
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Mass transfer of 1-hydroxyethylferrocenium cation from a
nitrobenzene microdroplet to the surrounding water phase was
directly measured by a generation-collection mode of a
microelectrode array combined with a laser trapping technique.
The mass transfer time of the derivative across the droplet/water
interface was analyzed for the first time by a potential scan rate
dependence of cyclic voltammograms.

We reported recently mass transfer (MT) processes of a
ferrocene derivative across a single nitrobenzene (NB) droplet /
water interface on the basis of a laser trapping-electrochemistry
(LTE) tf:chnique.l‘3 When the derivative in an NB droplet is
electrolyzed at a microelectrode, the oxidized species undergoes
quick exit to the surrounding water phase and, at a certain time
after electrolysis, the derivative recovers to the electrolyzed
droplet from the water phase to establish a distribution
equilibrium between two phases (Figure la). Although the
water-to-droplet MT process could be analyzed directly through a
recovery time of the electric charge in the relevant cyclic
voltammograms (CV) after electrolysis, the droplet-to-water MT
process was too fast (< 1s) to follow by the technique. On the
other hand, a generation-collection (GC) mode of a
microelectrode array has been known to be highly potential for
direct analyses of MT dynamics in solution,4-7 so that GC
experiments would provide information on the fast droplet-to-
water MT process. In this letter, we report the direct observation
of droplet-to-water MT of 1-hydroxyethylferrocenium cation
(FeCp) through an application of GC mode experiments to the
LTE method (Figure 1b).

An NB solution containing 1-hydroxyethylferrocene (FeCp)
and tetra-n-butylammonium tetraphenylborate (0.10 M, 1 M =1
mol dm-3) was dispersed in an NB-saturated aqueous tetra-n-
butylammonium chloride (1.0 mM) and MgSO4 (0.10 M)
solution. The concentrations of FeCp in the NB and water
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Figure 1. General schemes of mass transfer of FeCp/FeCp*
across the single droplet/water interface in single
microelectrode (a) and microelectrode array (b) systems.

phases at the distribution equilibrium have been reported to be
0.077 M and 0.19 mM, respectively.3

Three microband electrodes (8.7 um width x 60.0 um long x
0.3 um thickness), spaced in a 12.6 pm gap width, and a counter
electrode (0.2 mm width x 3.5 mm long x 0.3 pm thickness)
were fabricated on a sapphire plate by photolithography.
Ag/AgCl(NaCl(sat.)) was used as a reference electrode. These
electrodes were set on a slide glass as an electrolytic cell. The
center and the side band-electrodes were used as generating (GE)
and collecting electrodes (CE), respectively (Figure 1b). An LTE
system has been reported in detail elsewhere.2-3 Electrochemical
responses were measured by a dual potentiostat system (BS-1,
BAS) at room temperature (=23 °C). .

A single NB droplet (radius =~ 5 pm) was contacted with GE
by laser trapping, and currents at GE (Ig) and CE (Ic) were
measured simultaneously without laser trapping, where the
potential (E) of GE was swept between 0 and 0.68 V and that of
CE was fixed at 0 V (Figure 2). As a general characteristics, a
CV observed at a microelectrode shows a sigmoidal feature
owing to cylindrical diffusion of a solute in solution. On the
other hand, a CV of ferrocene in a single droplet exhibits only an
anodic peak current and, cathodic current corresponding to
reduction of the ferrocenium cation cannot be observed,
analogous to a CV for irreversible oxidation in a thin-layer
electrolytic cell.2 In the present experiments, such two features
are superimposed in the Ig-E curves. In Figure 2, namely, the Ig
peaks at E = =200 and =400 mV (E scan rate (v) = 50 mV/s)
correspond to oxidation of FeCp in the water phase (sigmoidal)
and that in the droplet (anodic peak), respectively.3 Analogous
behaviour can be also seen in the I.-E curve, where the sigmoidal
(E = =200 mV) and peaked currents (E = =400 mV) are relevant
to reduction of FeCp* originally distributed in the water phase
and to that distributed from the electrolyzed droplet to the water
phase, respectively. The collection efficiency (¢ = Ic/Ig)
determined at E = =200 mV for the FeCp/FeCp™* couple in the
water phase was =0.4 (Figure 2). The value agreed well with
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Figure 2. Cyclic voltammograms of an FeCp/FeCp* couple
observed at GE and CE. The potential at GE was swept
between 0 and 680 mV (50 mV/s) while that at CE was set 0 V.
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Figure 3. Logarithmic v dependencies of E,q (0), By (8) and
(Epc _Epg)v_l (A) .

that obtained for an Fe(CN)g#/Fe(CN)g3- couple in an aqueous
solution. Furthermore, ¢ of the FeCp/FeCp* couple defined as
the ratio of the total electric charge in the symmetrical peak at GE
to that at CE (E = =400 mV) was calculated to be ~0.4. These
results proved that FeCp* distributed from the electrolyzed
droplet was collected at CE. The droplet-to-water MT processes
can be thus analyzed by the present approach.

Ig- and I-E curves were recorded repeatedly for the single
droplet, in which the experiments were performed at every ~1
min after the previous potential scan to allow the distribution
reequilibrium of FeCp between two phases.1-3 We found that
the peak potentials at GE (Epg) and CE (Epc) were highly
dependent on v. As shown in Figure 3 the Epg value was
proportional to In (v), indicating irreversible oxidation of FeCp in
the droplet at the electrode/droplet interface.2 On the other hand,
although E,¢ increased with increasing v, the values did not fall
on a straight line. We consider that the v dependence of Ep. is
governed by the MT time of FeCp* from GE to CE. In the case
of diffusion-limited MT, the diffusion time (tg) of FeCp* from
GE to CE can be calculated by the equation, tq = d%/(2D), where
d and D are the diffusion distance and the diffusion coefficient of
FeCp*, respectively. The D value of FeCp in water or NB was
determined to be 6 x 10-6 or 4 x 10-6 cm? s-1, respectively, by
cyclic voltammetry. Since FeCp* diffuses in both the NB and
water phases, we take D of FeCp* as an average of these two
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values (5 x 10-6 cm? s-1). Furthermore, we assume that the sum
of a quarter width of GE (2.2 pm) and the interelectrode distance
between GE and CE (12.6 um) is equal to d (14.8 p.m).6 Using
these values, tq was calculated to be 0.22 s. Experimentally, a
time dependence of the concentration of FeCp™* around GE or CE
upon electrolysis can be-analyzed by Epg/v or Epc/v, respectively.
Thus, the value of (Epc - Epg) / v is regarded as a measure of the
MT time of FeCpt between GE and CE, which has been
estimated to be =0.2 s irrespective of v (Figure 3). The value is
in good agreement with the calculated MT time (tg4). A potential
difference across the NB/water interface (A¢) is determined by
the concentrations of tetra-n-butylammonium cation dissolved in
both phases, and calculated to be -131 mV on the basis of the
Nernst equation.2 Therefore, the MT time of FeCp* from GE to
CE is not limited by quick exit of positively charged FeCp™ at the
droplet/water interface.2 Diffusion of FeCp* in the NB and
water phases is thus concluded to be the rate-determining step of
MT from GE to CE across the droplet/water interface.

We demonstrated a potential means of the laser trapping and
microelectrode array methods to study quick MT processes
between a droplet and the surrounding solution phase. In the
present case, MT of FeCp* was shown to be limited by diffusion
of the compound in both phases. Generally, however, interfacial
MT processes are influenced by A¢, the size of a droplet, and so
forth. These aspects will be also elucidated directly by the
present approaches, which are the next target of the research.
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